smooth_feedback
Control and estimation on Lie groups
|
Sparse quadratic program definition. More...
#include <qp.hpp>
Public Attributes | |
Eigen::SparseMatrix< Scalar > | P |
Positive semi-definite square cost (only upper trianglular part is used) More... | |
Eigen::Matrix< Scalar, -1, 1 > | q |
Linear cost. More... | |
Eigen::SparseMatrix< Scalar, Eigen::RowMajor > | A |
Inequality matrix. More... | |
Eigen::Matrix< Scalar, -1, 1 > | l |
Inequality lower bound. More... | |
Eigen::Matrix< Scalar, -1, 1 > | u |
Inequality upper bound. More... | |
Sparse quadratic program definition.
The quadratic program is on the form
\[ \begin{cases} \min_{x} & \frac{1}{2} x^T P x + q^T x, \\ \text{s.t.} & l \leq A x \leq u, \end{cases} \]
where \( P \in \mathbb{R}^{n \times n}, q \in \mathbb{R}^n, l, u \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n} \).
Eigen::SparseMatrix<Scalar, Eigen::RowMajor> smooth::feedback::QuadraticProgramSparse< Scalar >::A |
Eigen::Matrix<Scalar, -1, 1> smooth::feedback::QuadraticProgramSparse< Scalar >::l |
Eigen::SparseMatrix<Scalar> smooth::feedback::QuadraticProgramSparse< Scalar >::P |
Eigen::Matrix<Scalar, -1, 1> smooth::feedback::QuadraticProgramSparse< Scalar >::q |
Eigen::Matrix<Scalar, -1, 1> smooth::feedback::QuadraticProgramSparse< Scalar >::u |