|
smooth
A C++ library for Lie theory
|
Storage implementation of SE2 Lie group. More...
#include <se2.hpp>

Public Member Functions | |
| template<typename SO2Derived , typename T2Derived > | |
| SE2 (const SO2Base< SO2Derived > &so2, const Eigen::MatrixBase< T2Derived > &r2) | |
| Construct from SO2 and R2. | |
| SE2 (const Eigen::Transform< Scalar, 2, Eigen::Isometry > &t) | |
| Construct from Eigen transform. | |
Public Member Functions inherited from SE2Base< SE2< _Scalar > > | |
| Map< SO2< Scalar > > | so2 () |
| Access SO(2) part. | |
| Map< const SO2< Scalar > > | so2 () const |
| Const access SO(2) part. | |
| Eigen::Map< Eigen::Vector2< Scalar > > | r2 () |
| Access R2 part. | |
| Eigen::Map< const Eigen::Vector2< Scalar > > | r2 () const |
| Const access R2 part. | |
| Eigen::Transform< Scalar, 2, Eigen::Isometry > | isometry () const |
| Return as 2D Eigen transform. | |
| Eigen::Vector2< Scalar > | operator* (const Eigen::MatrixBase< EigenDerived > &v) const |
| Tranformation action on 2D vector. | |
| Eigen::Matrix< Scalar, 2, 3 > | dr_action (const Eigen::MatrixBase< EigenDerived > &v) const |
| Jacobian of rotation action w.r.t. group. | |
| SE3< Scalar > | lift_se3 () const |
| Lift to SE3. | |
Public Member Functions inherited from LieGroupBase< Derived > | |
| template<bool = true> requires (is_mutable) | |
| auto & | coeffs () const |
| Access underlying storages. | |
| const auto & | coeffs () const |
| Const access underlying storages. | |
| template<bool = true> requires (is_mutable) | |
| auto * | data () const |
| Access raw pointer. | |
| const auto * | data () const |
| Const access raw pointer. | |
| template<typename OtherDerived > requires (is_mutable && std::is_same_v<Impl, typename liebase_info<OtherDerived>::Impl>) | |
| Derived & | operator= (const LieGroupBase< OtherDerived > &o) noexcept |
| Eigen::Index | dof () const noexcept |
| Dynamic size (degrees of freedom). | |
| void | setIdentity () noexcept |
| Set to group identity element. | |
| void | setRandom () noexcept |
| Set to a random element. | |
| Matrix | matrix () const noexcept |
| Return as matrix Lie group element in \( \mathbb{R}^{\mathtt{dim} \times \mathtt{dim}}
\). | |
| template<typename OtherDerived > requires (std::is_same_v<Impl, typename liebase_info<OtherDerived>::Impl>) | |
| bool | isApprox (const LieGroupBase< OtherDerived > &o, const Scalar &eps=Eigen::NumTraits< Scalar >::dummy_precision()) const noexcept |
Check if (approximately) equal to other element o. | |
| template<typename NewScalar > | |
| CastT< NewScalar > | cast () const noexcept |
| Cast to different scalar type. | |
| template<typename OtherDerived > requires (std::is_same_v<Impl, typename liebase_info<OtherDerived>::Impl>) | |
| PlainObject | operator* (const LieGroupBase< OtherDerived > &o) const noexcept |
| Group binary composition operation. | |
| template<typename OtherDerived > requires (is_mutable && std::is_same_v<Impl, typename liebase_info<OtherDerived>::Impl>) | |
| Derived & | operator*= (const LieGroupBase< OtherDerived > &o) noexcept |
| Inplace group binary composition operation. | |
| PlainObject | inverse () const noexcept |
| Group inverse operation. | |
| Tangent | log () const noexcept |
| Lie group logarithm. | |
| TangentMap | Ad () const noexcept |
| Lie group adjoint. | |
| template<typename TangentDerived > | |
| PlainObject | operator+ (const Eigen::MatrixBase< TangentDerived > &a) const noexcept |
| Right-plus. | |
| template<typename TangentDerived > requires (is_mutable) | |
| Derived & | operator+= (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Inplace right-plus: \( \mathbf{x} \leftarrow \mathbf{x} \circ \exp(\mathbf{a}) \). | |
| template<typename OtherDerived > requires (std::is_same_v<Impl, typename liebase_info<OtherDerived>::Impl>) | |
| Tangent | operator- (const LieGroupBase< OtherDerived > &xo) const noexcept |
| Right-minus. | |
Additional Inherited Members | |
Public Types inherited from LieGroupBase< Derived > | |
| using | Scalar = typename traits::Scalar |
| Scalar type. | |
| using | Matrix = Eigen::Matrix< Scalar, Dim, Dim > |
| Lie group matrix type. | |
| using | Tangent = Eigen::Matrix< Scalar, Dof, 1 > |
| Lie group parameterized tangent type. | |
| using | TangentMap = Eigen::Matrix< Scalar, Dof, Dof > |
| Matrix representing map between tangent elements. | |
| using | Hessian = Eigen::Matrix< Scalar, Dof, Dof *Dof > |
| Plain return type with different scalar. | |
| template<typename NewScalar > | |
| using | CastT = typename traits::template PlainObject< NewScalar > |
| Plain return type with different scalar. | |
| using | PlainObject = CastT< Scalar > |
| Plain return type. | |
Static Public Member Functions inherited from LieGroupBase< Derived > | |
| static PlainObject | Identity () noexcept |
| Construct the identity element. | |
| static PlainObject | Random () noexcept |
| Construct a random element. | |
| template<typename TangentDerived > | |
| static PlainObject | exp (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Lie group exponential map. | |
| template<typename TangentDerived > | |
| static Matrix | hat (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Lie algebra hat map. | |
| template<typename MatrixDerived > | |
| static Tangent | vee (const Eigen::MatrixBase< MatrixDerived > &A) noexcept |
| Lie alebra vee map. | |
| template<typename TangentDerived > | |
| static TangentMap | ad (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Lie algebra adjoint. | |
| template<typename TangentDerived1 , typename TangentDerived2 > | |
| static Tangent | lie_bracket (const Eigen::MatrixBase< TangentDerived1 > &a, const Eigen::MatrixBase< TangentDerived2 > &b) noexcept |
| Lie algebra bracket. | |
| template<typename TangentDerived > | |
| static TangentMap | dr_exp (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Right jacobian of the exponential map. | |
| template<typename TangentDerived > | |
| static TangentMap | dr_expinv (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Inverse of right jacobian of the exponential map. | |
| template<typename TangentDerived > | |
| static TangentMap | dl_exp (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Left jacobian of the exponential map. | |
| template<typename TangentDerived > | |
| static TangentMap | dl_expinv (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Inverse of left jacobian of the exponential map. | |
| template<typename TangentDerived > | |
| static Hessian | d2r_exp (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Right Hessian of the exponential map. | |
| template<typename TangentDerived > | |
| static Hessian | d2r_expinv (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Right Hessian of the log map. | |
| template<typename TangentDerived > | |
| static Hessian | d2l_exp (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Left Hessian of the exponential map. | |
| template<typename TangentDerived > | |
| static Hessian | d2l_expinv (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
| Left Hessian of the log map. | |
Public Attributes inherited from SE2Base< SE2< _Scalar > > | |
| SMOOTH_INHERIT_TYPEDEFS | |
Static Public Attributes inherited from LieGroupBase< Derived > | |
| static constexpr int | RepSize = Impl::RepSize |
| Number of scalars in internal representation. | |
| static constexpr int | Dof = Impl::Dof |
| Degrees of freedom of manifold (equal to tangent space dimension). | |
| static constexpr int | Dim = Impl::Dim |
| Side of Lie group matrix representation. | |
| static constexpr bool | IsCommutative = Impl::IsCommutative |
| Commutativity of group. A commutative group has a zero Lie bracket. | |
Protected Types inherited from LieGroupBase< Derived > | |
| using | traits = liebase_info< Derived > |
| CRTP traits. | |
| using | Impl = typename traits::Impl |
| Group-specific Lie group implementation. | |
Static Protected Attributes inherited from LieGroupBase< Derived > | |
| static constexpr bool | is_mutable = traits::is_mutable |
| True if underlying storage supports modification. | |
Storage implementation of SE2 Lie group.