smooth
A C++ library for Lie theory
Loading...
Searching...
No Matches
Public Attributes | Static Public Attributes | List of all members
spline_specs::MinDerivative< G, K, O, P > Struct Template Reference

SplineSpec for optimized spline. More...

#include <fit.hpp>

Public Attributes

std::array< Tangent< G >, std::size_t(P - 1)> left_values
 Values of left-side boundary constraints.
 
std::array< Tangent< G >, std::size_t(P - 1)> rght_values = left_values
 Values of right-side boundary constraints.
 

Static Public Attributes

static constexpr int Degree = K
 Polynomial degree.
 
static constexpr int OptDeg = O
 Optimization degree (absolute integral of derivative OptDeg is minimized)
 
static constexpr int InnCnt = P
 Number of derivatives to enforce continuity for.
 
static constexpr std::array< int, std::size_t(P - 1)> LeftDeg
 Degrees of left-side boundary constraints: 1, 2, ..., P-1.
 
static constexpr std::array< int, std::size_t(P - 1)> RghtDeg = LeftDeg
 Degrees of left-side boundary constraints: 1, 2, ..., P-1.
 

Detailed Description

template<LieGroup G, int K = 6, int O = 3, int P = 3>
struct spline_specs::MinDerivative< G, K, O, P >

SplineSpec for optimized spline.

Template Parameters
Kspline degree
Oorder to optimize
Pcontinuity order

Definition at line 102 of file fit.hpp.

Member Data Documentation

◆ Degree

template<LieGroup G, int K = 6, int O = 3, int P = 3>
constexpr int spline_specs::MinDerivative< G, K, O, P >::Degree = K
staticconstexpr

Polynomial degree.

Definition at line 105 of file fit.hpp.

◆ InnCnt

template<LieGroup G, int K = 6, int O = 3, int P = 3>
constexpr int spline_specs::MinDerivative< G, K, O, P >::InnCnt = P
staticconstexpr

Number of derivatives to enforce continuity for.

Definition at line 109 of file fit.hpp.

◆ left_values

template<LieGroup G, int K = 6, int O = 3, int P = 3>
std::array<Tangent<G>, std::size_t(P - 1)> spline_specs::MinDerivative< G, K, O, P >::left_values
Initial value:
= []() {
std::array<Tangent<G>, std::size_t(P - 1)> ret;
ret.fill(Tangent<G>::Zero());
return ret;
}()
Eigen::Vector< Scalar< M >, Dof< M > > Tangent
Tangent as a Dof-length vector.
Definition manifold.hpp:106

Values of left-side boundary constraints.

Definition at line 119 of file fit.hpp.

◆ LeftDeg

template<LieGroup G, int K = 6, int O = 3, int P = 3>
constexpr std::array<int, std::size_t(P - 1)> spline_specs::MinDerivative< G, K, O, P >::LeftDeg
staticconstexpr
Initial value:
= []() {
std::array<int, std::size_t(P - 1)> ret;
for (auto i = 0; i + 1 < P; ++i) { ret[static_cast<std::size_t>(i)] = i + 1; }
return ret;
}()

Degrees of left-side boundary constraints: 1, 2, ..., P-1.

Definition at line 112 of file fit.hpp.

◆ OptDeg

template<LieGroup G, int K = 6, int O = 3, int P = 3>
constexpr int spline_specs::MinDerivative< G, K, O, P >::OptDeg = O
staticconstexpr

Optimization degree (absolute integral of derivative OptDeg is minimized)

Definition at line 107 of file fit.hpp.

◆ rght_values

template<LieGroup G, int K = 6, int O = 3, int P = 3>
std::array<Tangent<G>, std::size_t(P - 1)> spline_specs::MinDerivative< G, K, O, P >::rght_values = left_values

Values of right-side boundary constraints.

Definition at line 128 of file fit.hpp.

◆ RghtDeg

template<LieGroup G, int K = 6, int O = 3, int P = 3>
constexpr std::array<int, std::size_t(P - 1)> spline_specs::MinDerivative< G, K, O, P >::RghtDeg = LeftDeg
staticconstexpr

Degrees of left-side boundary constraints: 1, 2, ..., P-1.

Definition at line 126 of file fit.hpp.


The documentation for this struct was generated from the following file: