smooth
A C++ library for Lie theory
|
Base class for SE3 Lie group types. More...
#include <se3.hpp>
Public Member Functions | |
Map< SO3< Scalar > > | so3 () |
Access SO(3) part. | |
Map< const SO3< Scalar > > | so3 () const |
Const access SO(3) part. | |
Eigen::Map< Eigen::Vector3< Scalar > > | r3 () |
Access R3 part. | |
Eigen::Map< const Eigen::Vector3< Scalar > > | r3 () const |
Const access R3 part. | |
Eigen::Transform< Scalar, 3, Eigen::Isometry > | isometry () const |
Return as 3D Eigen transform. | |
template<typename EigenDerived > | |
Eigen::Vector3< Scalar > | operator* (const Eigen::MatrixBase< EigenDerived > &v) const |
Tranformation action on 3D vector. | |
template<typename EigenDerived > | |
Eigen::Matrix< Scalar, 3, 6 > | dr_action (const Eigen::MatrixBase< EigenDerived > &v) const |
Jacobian of rotation action w.r.t. group. | |
SE2< Scalar > | project_se2 () const |
Project to SE2. | |
Public Member Functions inherited from LieGroupBase< _Derived > | |
auto & | coeffs () const |
Access underlying storages. | |
const auto & | coeffs () const |
Const access underlying storages. | |
auto * | data () const |
Access raw pointer. | |
const auto * | data () const |
Const access raw pointer. | |
_Derived & | operator= (const LieGroupBase< OtherDerived > &o) noexcept |
Eigen::Index | dof () const noexcept |
Dynamic size (degrees of freedom). | |
void | setIdentity () noexcept |
Set to group identity element. | |
void | setRandom () noexcept |
Set to a random element. | |
Matrix | matrix () const noexcept |
Return as matrix Lie group element in \( \mathbb{R}^{\mathtt{dim} \times \mathtt{dim}}
\). | |
bool | isApprox (const LieGroupBase< OtherDerived > &o, const Scalar &eps=Eigen::NumTraits< Scalar >::dummy_precision()) const noexcept |
Check if (approximately) equal to other element o . | |
CastT< NewScalar > | cast () const noexcept |
Cast to different scalar type. | |
PlainObject | operator* (const LieGroupBase< OtherDerived > &o) const noexcept |
Group binary composition operation. | |
_Derived & | operator*= (const LieGroupBase< OtherDerived > &o) noexcept |
Inplace group binary composition operation. | |
PlainObject | inverse () const noexcept |
Group inverse operation. | |
Tangent | log () const noexcept |
Lie group logarithm. | |
TangentMap | Ad () const noexcept |
Lie group adjoint. | |
PlainObject | operator+ (const Eigen::MatrixBase< TangentDerived > &a) const noexcept |
Right-plus. | |
_Derived & | operator+= (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Inplace right-plus: \( \mathbf{x} \leftarrow \mathbf{x} \circ \exp(\mathbf{a}) \). | |
Tangent | operator- (const LieGroupBase< OtherDerived > &xo) const noexcept |
Right-minus. | |
Public Attributes | |
SMOOTH_INHERIT_TYPEDEFS | |
Additional Inherited Members | |
Public Types inherited from LieGroupBase< _Derived > | |
using | Scalar = typename traits::Scalar |
Scalar type. | |
using | Matrix = Eigen::Matrix< Scalar, Dim, Dim > |
Lie group matrix type. | |
using | Tangent = Eigen::Matrix< Scalar, Dof, 1 > |
Lie group parameterized tangent type. | |
using | TangentMap = Eigen::Matrix< Scalar, Dof, Dof > |
Matrix representing map between tangent elements. | |
using | Hessian = Eigen::Matrix< Scalar, Dof, Dof *Dof > |
Plain return type with different scalar. | |
using | CastT = typename traits::template PlainObject< NewScalar > |
Plain return type with different scalar. | |
using | PlainObject = CastT< Scalar > |
Plain return type. | |
Static Public Member Functions inherited from LieGroupBase< _Derived > | |
static PlainObject | Identity () noexcept |
Construct the identity element. | |
static PlainObject | Random () noexcept |
Construct a random element. | |
static PlainObject | exp (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Lie group exponential map. | |
static Matrix | hat (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Lie algebra hat map. | |
static Tangent | vee (const Eigen::MatrixBase< MatrixDerived > &A) noexcept |
Lie alebra vee map. | |
static TangentMap | ad (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Lie algebra adjoint. | |
static Tangent | lie_bracket (const Eigen::MatrixBase< TangentDerived1 > &a, const Eigen::MatrixBase< TangentDerived2 > &b) noexcept |
Lie algebra bracket. | |
static TangentMap | dr_exp (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Right jacobian of the exponential map. | |
static TangentMap | dr_expinv (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Inverse of right jacobian of the exponential map. | |
static TangentMap | dl_exp (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Left jacobian of the exponential map. | |
static TangentMap | dl_expinv (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Inverse of left jacobian of the exponential map. | |
static Hessian | d2r_exp (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Right Hessian of the exponential map. | |
static Hessian | d2r_expinv (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Right Hessian of the log map. | |
static Hessian | d2l_exp (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Left Hessian of the exponential map. | |
static Hessian | d2l_expinv (const Eigen::MatrixBase< TangentDerived > &a) noexcept |
Left Hessian of the log map. | |
Static Public Attributes inherited from LieGroupBase< _Derived > | |
static constexpr int | RepSize |
Number of scalars in internal representation. | |
static constexpr int | Dof |
Degrees of freedom of manifold (equal to tangent space dimension). | |
static constexpr int | Dim |
Side of Lie group matrix representation. | |
static constexpr bool | IsCommutative |
Commutativity of group. A commutative group has a zero Lie bracket. | |
Protected Types inherited from LieGroupBase< _Derived > | |
using | traits = liebase_info< _Derived > |
CRTP traits. | |
using | Impl = typename traits::Impl |
Group-specific Lie group implementation. | |
Static Protected Attributes inherited from LieGroupBase< _Derived > | |
static constexpr bool | is_mutable |
True if underlying storage supports modification. | |
Base class for SE3 Lie group types.
Internally represented as \(\mathbb{S}^3 \times \mathbb{R}^3\).
\[ \mathbf{X} = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4} \]
where \(R\) is a 3x3 rotation matrix and \( T = [x, y, z]^T \).
\[ \mathbf{a}^\wedge = \begin{bmatrix} 0 & -\omega_z & \omega_y & v_x \\ \omega_z & 0 & -\omega_x & v_y \\ -\omega_y & \omega_x & 0 & v_y \\ 0 & 0 & 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4} \]
|
inline |
|
inline |