|
smooth
A C++ library for Lie theory
|
Various useful derivatives. More...

Go to the source code of this file.
Functions | |
| template<typename At , typename dAt , typename Bt , typename dBt > | |
| SMOOTH_BEGIN_NAMESPACE auto | d_matrix_product (const At &A, const dAt &dA, const Bt &B, const dBt &dB) |
| Derivative of matrix product. | |
| template<typename JfT , typename HfT , typename JgT , typename HgT > | |
| auto | d2_fog (const JfT &Jf, const HfT &Hf, const JgT &Jg, const HgT &Hg) |
| Hessian of composed function \( (f \circ g)(x) \). | |
| template<LieGroup G> | |
| TangentMap< G > | dr_rminus (const Tangent< G > &e) |
| Jacobian of rminus. | |
| template<LieGroup G> | |
| Hessian< G > | d2r_rminus (const Tangent< G > &e) |
| Hessian of rminus. | |
| template<LieGroup G> | |
| Eigen::RowVector< Scalar< G >, Dof< G > > | dr_rminus_squarednorm (const Tangent< G > &e) |
| Jacobian of the squared norm of rminus. | |
| template<LieGroup G> | |
| Eigen::Matrix< Scalar< G >, Dof< G >, Dof< G > > | d2r_rminus_squarednorm (const Tangent< G > &e) |
| Hessian of the squared norm of rminus. | |
Various useful derivatives.
Definition in file derivatives.hpp.
| auto d2_fog | ( | const JfT & | Jf, |
| const HfT & | Hf, | ||
| const JgT & | Jg, | ||
| const HgT & | Hg | ||
| ) |
Hessian of composed function \( (f \circ g)(x) \).
| Jf | Jacobian of f at y = g(x) [No x Ny ] |
| Hf | Hessian of f at y = g(x) [Ny x No*Ny] |
| Jg | Jacobian of g at x [Ny x Nx ] |
| Hg | Hessian of g at x [Nx x Ny*Nx] |
Hessian of rminus.
| e | value of \( x \ominus_r y \) |
| Eigen::Matrix< Scalar< G >, Dof< G >, Dof< G > > d2r_rminus_squarednorm | ( | const Tangent< G > & | e | ) |
Hessian of the squared norm of rminus.
| e | value of \( x \ominus_r y \) |
| SMOOTH_BEGIN_NAMESPACE auto d_matrix_product | ( | const At & | A, |
| const dAt & | dA, | ||
| const Bt & | B, | ||
| const dBt & | dB | ||
| ) |
Derivative of matrix product.
| A | matrix [N x K] |
| dA | derivative of A on horizontal Hessian form [K x N*Nvar] |
| B | matrix [K x M] |
| dB | derivative of B on horizontal Hessian form [M x K*Nvar] |
| TangentMap< G > dr_rminus | ( | const Tangent< G > & | e | ) |
Jacobian of rminus.
| e | value of \( x \ominus_r y \) |