smooth
A C++ library for Lie theory
Loading...
Searching...
No Matches
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
 CAnyManifoldType erasure Manifold class
 Cstd::array
 Cdetail::BoostOdeintOpsboost::odeint Stepper operations for Manifold types
 CBSpline< K, G >Cardinal Bspline on a Lie group
 Cspline_specs::FixedDerCubic< G, P1, P2 >SplineSpec for a cubic spline with two boundary conditions
 Clp2d::detail::HalfPlaneHalfplane represented as inequality ax + by <= c
 Ctraits::lie< T >Trait class for making a class a LieGroup instance via specialization
 Ctraits::lie< G >LieGroup model specification for NativeLieGroup
 Ctraits::lie_sparse< G >Traits that defines sparsity patterns for various groups
 Cliebase_info< T >Type trait that maps a type to Lie group operations
 Cliebase_info< smooth::SE3d >
 Cliebase_info< smooth::SO3d >
 CLieGroupBase< Derived >Base class for Lie group types
 CLieGroupBase< _Derived >
 CLieGroupBase< Bundle< _Gs... > >
 CLieGroupBase< C1< _Scalar > >
 CLieGroupBase< Galilei< _Scalar > >
 CLieGroupBase< Map< Bundle< _Gs... > > >
 CLieGroupBase< Map< C1< _Scalar > > >
 CLieGroupBase< Map< const Bundle< _Gs... > > >
 CLieGroupBase< Map< const C1< _Scalar > > >
 CLieGroupBase< Map< const Galilei< _Scalar > > >
 CLieGroupBase< Map< const SE2< _Scalar > > >
 CLieGroupBase< Map< const SE3< _Scalar > > >
 CLieGroupBase< Map< const SE_K_3< _Scalar, _K > > >
 CLieGroupBase< Map< const SO2< _Scalar > > >
 CLieGroupBase< Map< const SO3< _Scalar > > >
 CLieGroupBase< Map< Galilei< _Scalar > > >
 CLieGroupBase< Map< SE2< _Scalar > > >
 CLieGroupBase< Map< SE3< _Scalar > > >
 CLieGroupBase< Map< SE_K_3< _Scalar, _K > > >
 CLieGroupBase< Map< SO2< _Scalar > > >
 CLieGroupBase< Map< SO3< _Scalar > > >
 CLieGroupBase< SE2< _Scalar > >
 CLieGroupBase< SE3< _Scalar > >
 CLieGroupBase< SE_K_3< _Scalar, K > >
 CLieGroupBase< SO2< _Scalar > >
 CLieGroupBase< SO3< _Scalar > >
 Ctraits::man< T >Trait class for making a class a Manifold instance via specialization
 Ctraits::man< G >Manifold interface for LieGroup types (all LieGroups are also Manifolds)
 Ctraits::man< std::variant< Ms... > >Manifold model specification for std::variant<Manifold...>
 Ctraits::man< std::vector< M > >Manifold model specification for std::vector<Manifold>
 CMap< T >Memory mapping of internal Lie group types
 Cspline_specs::MinDerivative< G, K, O, P >SplineSpec for optimized spline
 CMinimizeOptions
 Cspline_specs::NoConstraints< G, K >SplineSpec without boundary constraints
 Cdetail::scalar_trait< autodiff::Dual< T, T > >Specialize trait to make autodiff type a Manifold
 Cdetail::scalar_trait< ceres::Jet< T, I > >
 Cdetail::BoostOdeintOps::scale_sum< Fac >Variadic scale_sum implementation
 Csmooth::SE3Base
 Csmooth::SO3Base
 CSolveResult
 CSpline< K, G >Single-parameter Lie group-valued function
 CSubManifold< M >A Submanifold is a subspace of a manifold defined by an origin m0 and a tangent subspace
 CTrustRegionStrategy